RNA topology remolds electrostatic stabilization of viruses.

نویسندگان

  • Gonca Erdemci-Tandogan
  • Jef Wagner
  • Paul van der Schoot
  • Rudolf Podgornik
  • Roya Zandi
چکیده

Simple RNA viruses efficiently encapsulate their genome into a nano-sized protein shell: the capsid. Spontaneous coassembly of the genome and the capsid proteins is driven predominantly by electrostatic interactions between the negatively charged RNA and the positively charged inner capsid wall. Using field theoretic formulation we show that the inherently branched RNA secondary structure allows viruses to maximize the amount of encapsulated genome and make assembly more efficient, allowing viral RNAs to out-compete cellular RNAs during replication in infected host cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of RNA branching on the electrostatic stabilization of viruses.

Many single-stranded (ss) ribonucleic acid (RNA) viruses self-assemble from capsid protein subunits and the nucleic acid to form an infectious virion. It is believed that the electrostatic interactions between the negatively charged RNA and the positively charged viral capsid proteins drive the encapsidation, although there is growing evidence that the sequence of the viral RNA also plays a rol...

متن کامل

An examination of the electrostatic interactions between the N-terminal tail of the Brome Mosaic Virus coat protein and encapsidated RNAs.

The coat protein of positive-stranded RNA viruses often contains a positively charged tail that extends toward the center of the capsid and interacts with the viral genome. Electrostatic interaction between the tail and the RNA has been postulated as a major force in virus assembly and stabilization. The goal of this work is to examine the correlation between electrostatic interaction and amoun...

متن کامل

Energies and pressures in viruses: contribution of nonspecific electrostatic interactions.

We summarize some aspects of electrostatic interactions in the context of viruses. A simplified but, within well defined limitations, reliable approach is used to derive expressions for electrostatic energies and the corresponding osmotic pressures in single-stranded RNA viruses and double-stranded DNA bacteriophages. The two types of viruses differ crucially in the spatial distribution of thei...

متن کامل

Nonspecific interactions in spontaneous assembly of empty versus functional single-stranded RNA viruses.

We investigate the influence of salt concentration, charge on viral proteins and the length of single-stranded RNA (ssRNA) molecule on the spontaneous assembly of viruses. Only the nonspecific interactions are assumed to guide the assembly, i.e., we exclude any chemical specificity that may lock the viral proteins and ssRNA in preferred configurations. We demonstrate that the electrostatic inte...

متن کامل

The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.

RNA molecules adopt specific three-dimensional structures critical to their function. Many essential metabolic processes, including protein synthesis and RNA splicing, are carried out by RNA molecules with elaborate tertiary structures (e.g. 3QIQ, right). Indeed, the ribosome and self-splicing introns are complex RNA machines. But even the coding regions in messenger RNAs and viral RNAs are fl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 89 3  شماره 

صفحات  -

تاریخ انتشار 2014